Intervention after Neonatal Brain Injury: Experimental Evidence

John Barks M.D.
Associate Professor of Pediatrics
University of Michigan
Immature Animal Models of Cerebral Palsy

• Pre- or postnatal hypoxia-ischemia (HI) models
• With functional outcome
 – Rabbits (global injury)
 – Rats and mice (unilateral injury)
• Without functional outcome
 – Fetal lambs
 – Piglets
Neonatal HI Models with Functional Outcome (1)

- Rabbit: in-utero transient (40 min) aortic occlusion (upstream of uterine arteries) on E22 (70% gestation; term=31.5 d) or E29 (79% gestation)
 - Tan, Derrick, et al. (Evanston-Northwestern)
 - White matter injury in corpus callosum, internal capsule, corona radiata
 - Neonatal spasticity or motor deficits in ~70% of survivors, variable severity; need intensive care
 - No long term outcome; no “cognitive” measures (yet)
Neonatal HI Models with Functional Outcome (2)

- Rat - postnatal day 7 unilateral carotid ligation + timed hypoxia exposure (Rice, Vannucci and many others)
 - P7 brain similar to third trimester human
 - Cortical, striatal and hippocampal damage
 - Contralateral sensorimotor deficits, not spastic, detectable in “infancy”
 - Cognitive deficits (spatial learning and memory) detectable in juvenile, adult
P7 Rat HI: MRI and Pathology

A; Diffusion weighted imaging, striatal level P8
B: T2-weighted imaging, P8
C: T2-weighted imaging, P22
D: Nissl stained section, adult
P7 Rat HI: Range of Pathology

Non-HI

Mild

Mod

Sev
Modeling Behavioral Intervention

• Early Neonatal Handling (Seymour Levine, Michael Meaney)
 – Increased maternal care-giving pre-weaning
 – Improved stress axis feedback regulation
 – Improved learning and memory in aging

• When applied after P7 rat hypoxia-ischemia, post-HI handling reverses post-HI learning deficits (Chou et al., 2001)
 – No effect on swim speed
Modeling Motor Intervention

• Why?
 – Understand mechanisms
 – Support more human trials

• Current modeling projects:
 – Constraint induced movement therapy
 – Treadmill training
Targeted Motor Intervention

• Constraint-induced movement therapy
 – (Early) forced use of impaired limb
• Commonly used in adult stroke victims with hemiplegia
• 3 randomized trials in hemiplegic CP (n=94)
 – 1 with significant effect
 – still “experimental” (Cochrane Database, 2007)
• Mechanism of effect unknown
• Can we model this in neonatal animals, to investigate mechanisms?
Targeted Motor Stimulation

• Unilateral (right) HI, P7 rats (1.5 h or 2 h)
• Repetitive stimulation of left vibrissae, twice daily, x 5 wks
• 2 Control groups: “Vestibular”; “testing only”
• 1º Outcome: Weekly testing: Forepaw placing response P14-63
• 2º Outcome: Adult testing: Rotarod (gait); Vertical Cylinder (forepaw preference); Watermaze (spatial learning)
Summary

• Forced use paradigm targeting affected forelimb accelerated recovery of reflex forepaw placing in that limb.
• Other effects: coordinated forepaw use in cylinder restored to normal
• Benefit not confounded by difference in baseline severity of injury, nor by difference in injury progression (MRI)