A Population Perspective on Cerebral Palsy: Findings from Current Surveillance and Research

Marshalyn Yeargin-Allsopp, MD
National Center on Birth Defects and Developmental Disabilities
Centers for Disease Control and Prevention

Michigan State University
Department of Epidemiology, Spring 2012 Seminar Series
Presentation Overview

• Why is cerebral palsy (CP) an important public health issue?
• History and definitions
• Epidemiologic terminology
• Public health model for CP
• CP surveillance and epidemiology
• Summary
Why is Cerebral Palsy an Important Public Health Issue?

- 15% of children in the United States have a developmental disability
 - 1 in 303 children has cerebral palsy

- Children with developmental disabilities, including cerebral palsy, require increased pediatric health and specialist services -- both to treat their developmental disability and any concurrent medical conditions

- Medical costs for Medicaid-enrolled children with cerebral palsy were **10 times higher** than for Medicaid-enrolled children without cerebral palsy

- Per-person lifetime costs associated with cerebral palsy estimated to be almost $1 million (2003 dollars)

Boyle et al., 2011; Schieve et al., 2012; Kancherla et al., 2012; CDC, 2004
History

1862: William John Little described 47 children with spastic rigidity: 1) hemiplegic rigidity (one side only); 2) paraplegia (legs more than arms); 3) generalized rigidity.

1992: Mutch et al. in DMCN “an umbrella term covering a group of non-progressive, but often changing, motor impairment syndromes secondary to lesions or anomalies of the brain arising in the early stages of development.”

Classification of CP

CP Definition for Surveillance

- A group of permanent disorders of the development of movement and posture that are attributed to non-progressive disturbances that occurred in the developing brain.*
- Often accompanied by disturbances of sensation, perception, cognition, communication, and behaviour; by epilepsy; and by secondary musculoskeletal problems.*
- Includes postnatally acquired CP (MADDSP modification)
- Impairment may result in paresis, involuntary movement, or incoordination.
- Does not include motor disorders that:
 - are transient
 - result from progressive disease of the brain
 - are due to spinal cord abnormalities/injuries

EPIDEMIOLOGIC ISSUES IN CP PREVALENCE STUDIES
Prevalence of CP (per 1000) Found in Population Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Denominator Population</th>
<th>Rate/1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hagberg; Sweden, 2001</td>
<td>Cross-sectional; live births</td>
<td>2.1</td>
</tr>
<tr>
<td>Johnson (SCPE); Europe, 2002</td>
<td>Birth cohorts; live births</td>
<td>2.1</td>
</tr>
<tr>
<td>Winter; US, 2002</td>
<td>MADDSP Birth cohorts; live births</td>
<td>2.0</td>
</tr>
<tr>
<td>Sundrum; UK, 2005</td>
<td>Retrospective cohort; live births</td>
<td>2.8</td>
</tr>
<tr>
<td>Serdarogulu; Turkey, 2006</td>
<td>Cross-sectional; all children ages 2-16</td>
<td>4.4</td>
</tr>
<tr>
<td>Ozturk; Turkey, 2006</td>
<td>Cross-sectional; live births</td>
<td>1.1</td>
</tr>
<tr>
<td>Bhasin; US, 2006</td>
<td>MADDSP; Cross-sectional, 8-year-olds</td>
<td>3.1</td>
</tr>
<tr>
<td>Yeargin-Allsopp; US, 2008</td>
<td>ADDM; Cross-sectional, 8-year-olds</td>
<td>3.6</td>
</tr>
<tr>
<td>Boulet; US, 2009</td>
<td>NHIS; Children ages 3-17</td>
<td>3.9</td>
</tr>
<tr>
<td>Kirby, US, 2011</td>
<td>ADDM; Cross-sectional, 8-year-olds</td>
<td>3.3</td>
</tr>
</tbody>
</table>
Choice of Denominator

Birth prevalence:

Number of CP cases who resided in the geographic area at birth
Number of live-births or 1-year survivors in the geographic area.

Period prevalence:

Number of CP cases who resided in the geographic area during a specified time period regardless of residence at time of birth
Number of children residing in the geographic area during a specified time period.
Issues To Consider When Comparing Birth and Period Prevalence

• Case ascertainment for birth and period prevalence is in childhood, not at birth.

• Period prevalence numerator and denominator are subject to the same survival and migration effects; not true for birth prevalence.

• Follow-up of entire underlying live-birth cohort is crucial to comparing birth and period prevalence.

• MORTALITY AND MIGRATION ARE KEY FACTORS
Public Health Model for Prevention of CP

Surveillance Systems
- prevalence
- registry of cases
- monitor prevention

Epidemiological Studies
- risk factors
- protective factors
- public concerns

Prevention Programs
- prevention strategies
- public policy
- education
Methods for Conducting CP Surveillance

- Notification (Reportable Disease Surveillance)
- Periodic Population-Based Surveys
- Aggregate Data
- Disease Registries
- Ongoing Population-Based Surveillance
CDC’s Metropolitan Atlanta Developmental Disabilities Surveillance Program (MADDSP)

- Ongoing, population-based administrative prevalence program based in five counties of metro Atlanta (Clayton, Cobb, DeKalb, Fulton, Gwinnett)
- Autism, cerebral palsy, hearing loss, intellectual disability, vision impairment
- Children 8 years old
- Multiple health and education sources
 - 9 school systems (2 with decentralized records)
 - 24 clinical sources
MADDSP Surveillance Case Definitions

Cerebral Palsy (CP)
A group of permanent disorders of the development of movement and posture that are attributed to non-progressive disturbances that occurred in the developing brain.

Intellectual Disability (ID)
I.Q. ≤ 70 on most recently administered psychometric test
*Formerly referred to as Mental Retardation (MR)

Hearing Loss (HL)
Measured bilateral pure tone hearing loss averaging 40 decibels or higher (unaided) in the better ear

Vision Impairment (VI)
Measured visual acuity of 20/70 or worse in the better eye with correction

Autism spectrum disorder (ASD)
A constellation of behaviors indicating social, communicative, and behavioral impairment or abnormalities-essential features are (a) impaired reciprocal social interactions, (b) delayed or unusual communication styles, and (c) restricted or repetitive behavior patterns.
MADDSP: Types of Data Collected

• Demographics: child and parent names, race, ethnicity, gender, residence, DOB
• School service data: school, spec ed eligibility category
• Psychometric test results: intelligence, adaptive, autism
• Hearing and vision test results
• Physical findings (CP)
 – Including gross motor function
• Verbatim descriptions of behaviors (ASDs)
• Associated medical conditions
• Other developmental disabilities monitored by MADDSP

Prevalence per 1,000 Surveillance Year

- Non-Migrant Prevalence
- Period Prevalence

CDC’s Autism and Developmental Disabilities Monitoring (ADDM) CP Network

Current ADDM Network Sites, Surveillance Years 2010 and 2012

- Monitoring 8 year olds
- Monitoring 4 and 8 year olds

Legend:
- Autism
- Autism, Cerebral Palsy
- Autism, Intellectual Disability
- Autism, Cerebral Palsy, Intellectual Disability, Vision Impairment, and Hearing Loss
Overall Prevalence*, SY2006

<table>
<thead>
<tr>
<th>Study Area</th>
<th>AL</th>
<th>GA</th>
<th>MO</th>
<th>WI</th>
<th>All Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Northern AL</td>
<td>Metropolitan Atlanta</td>
<td>Metropolitan St. Louis</td>
<td>Southeastern Wisconsin</td>
<td>All Sites</td>
</tr>
<tr>
<td>Total number of CP cases</td>
<td>117</td>
<td>178</td>
<td>84</td>
<td>97</td>
<td>476</td>
</tr>
<tr>
<td>Total 8-year-olds in study area</td>
<td>35,126</td>
<td>46,621</td>
<td>26,533</td>
<td>34,058</td>
<td>142,338</td>
</tr>
<tr>
<td>Total prevalence per 1,000</td>
<td>3.3</td>
<td>3.8</td>
<td>3.2</td>
<td>2.9</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Gender-Specific Prevalence, SY 2006

<table>
<thead>
<tr>
<th>State</th>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>3.2</td>
<td>2.4</td>
</tr>
<tr>
<td>Georgia</td>
<td>4.1</td>
<td>3.5</td>
</tr>
<tr>
<td>Missouri</td>
<td>3.6</td>
<td>2.8</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>3.5</td>
<td>2.2</td>
</tr>
<tr>
<td>Average</td>
<td>3.6</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Boys: shown as yellow bars, Girls: shown as green bars. Prevalence per 1,000 8-year-olds.

Source: Kirby et al., 2011
Race-Specific Prevalence, SY2006

<table>
<thead>
<tr>
<th></th>
<th>AL</th>
<th>GA</th>
<th>MO</th>
<th>WI</th>
<th>All Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>White NH</td>
<td>3.1</td>
<td>3.8</td>
<td>2.8</td>
<td>3.0</td>
<td>3.2</td>
</tr>
<tr>
<td>Black NH</td>
<td>4.3</td>
<td>3.9</td>
<td>3.4</td>
<td>2.8</td>
<td>3.7</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1.2</td>
<td>3.3</td>
<td>1.3</td>
<td>1.0</td>
<td>1.8</td>
</tr>
<tr>
<td>Asian/Pacific Islander NH</td>
<td>-</td>
<td>2.6</td>
<td>1.3</td>
<td>3.3</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Kirby et al., 2011
CP Subtypes, SY 2006

- Spastic subtype = 81%
 - Bilateral Spastic includes diplegia, quadriplegia, tetraplegia, and triplegia
 - Unilateral Spastic includes hemiplegia and monoplegia
 - Other includes ataxic, dyskinetic, hypotonic, mixed CP subtypes, and CP NOS

Kirby et al., 2011
Gross Motor Function Classification System (GFMCS)

- **LEVEL I** - Walks without limitations
- **LEVEL II** - Walks with limitations
- **LEVEL III** - Walks using a hand-held mobility device (crutches, cane, walker)
- **LEVEL IV** - Self-mobility with limitations; may use powered mobility
- **LEVEL V** - transported in a manual wheelchair

GMFCS by Palisano et al., 1997
Defining Walking Ability

• In several ADDM CP Network studies, walking ability for children with an assigned GMFCS* level was categorized as follows:
 – Level I or II: “walks independently”
 – Level III: “walks with a handheld mobility device”
 – Level IV or V: “limited or no walking ability”

*Some children did not have sufficient information to assign a level of walking ability using the GMFCS. In those cases, walking ability is assigned using the methodology of the Surveillance of Cerebral Palsy in Europe group.

Kirby et al., 2011; Christensen et al., unpublished
Walking Ability Among 8-Year-Old Children with CP, ADDM CP Network, 2006

- 56% Walks Independently
- 33% Limited or No Walking Ability
- 11% Walks with Hand-held Mobility Device
The Association between Cerebral Palsy or Intellectual Disability and Prenatal Magnesium Sulfate Exposure in Atlanta Infant Survivors

<table>
<thead>
<tr>
<th>Prenatal Magnesium Sulfate Exposure</th>
<th>Yes</th>
<th>No</th>
<th>OR</th>
<th>95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>1 (0.9%)</td>
<td>30 (7.7%)</td>
<td>0.11</td>
<td>0.02, 0.81</td>
</tr>
<tr>
<td>MR/ID</td>
<td>2 (1.8%)</td>
<td>22 (5.8%)</td>
<td>0.30</td>
<td>0.07, 1.29</td>
</tr>
</tbody>
</table>

Magnesium Sulfate Reduces CP Risk after Preterm Birth

- 2,241 women at "imminent risk" of preterm birth
 - 24 through 31 weeks gestation
- Cases randomized to intravenous magnesium sulfate or placebo
- Results:
 - Overall prevalence of CP was lower in the mag sulfate treated group (1.9% versus 3.5%).
 - The risk of death did not differ significantly between groups and no woman had a life-threatening event.

Medical Costs Associated with CP

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Medical costs (2005 dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neither CP or Intellectual Disability</td>
<td>$1,674</td>
</tr>
<tr>
<td>CP Alone</td>
<td>$16,721</td>
</tr>
<tr>
<td>Both CP and Intellectual Disability</td>
<td>$43,338</td>
</tr>
</tbody>
</table>

- Among Medicaid-enrolled children, medical costs...
 - For children with CP alone were **10 times higher** than for children without CP or intellectual disability.
 - For children with both CP and intellectual disability were **26 times higher** than for children without either.
 - For children with both CP and intellectual disability were almost **3 times higher** than for children with CP alone.

Racial Disparities in Severity of Gross Motor Limitations

• Overall prevalence by race
 – 3.7 per 1,000 Black children
 – 3.2 per 1,000 White children

• Among children with cerebral palsy, Black children had higher rates of limited or no walking ability

<table>
<thead>
<tr>
<th>Gross Motor Limitations</th>
<th>Black-White Prevalence OR (95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMFCS Level I & II</td>
<td>0.9 (0.7- 1.3)</td>
</tr>
<tr>
<td>GMFCS Level III</td>
<td>1.6 (0.8- 3.3)</td>
</tr>
<tr>
<td>GMFCS Level IV & V</td>
<td>1.7 (1.1- 2.4)</td>
</tr>
</tbody>
</table>

*Imputed Analysis

Frequency of Autism Spectrum Disorder, MADDSP, SY 2000-2006

<table>
<thead>
<tr>
<th>Year</th>
<th>Among children with CP</th>
<th>Among all children</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>8.9 (12)</td>
<td>0.65</td>
</tr>
<tr>
<td>2002</td>
<td>8.9 (15)</td>
<td>0.76</td>
</tr>
<tr>
<td>2004</td>
<td>9.8 (14)</td>
<td>0.89</td>
</tr>
<tr>
<td>2006</td>
<td>9.0 (16)</td>
<td>1.0</td>
</tr>
</tbody>
</table>
CP in the CDC–Denmark Collaboration

- Established agreement with the Danish Medical Research Council to collaborate on research
- Use Denmark’s unique data infrastructure to address questions for which:
 - Data are not currently available in the US, or
 - Much more costly to replicate

- Partners include:
 - University of Aarhus
 - Department of Epidemiology
 - Department of Biostatistics
 - University Hospital of Child and Adolescent
 - University Hospital, Skejby
 - Staten Serum Institute
 - Department of Clinical Biochemistry
 - Newborn Screening Biobank
 - Collaborations with several other Danish institutions in a network
Why A Collaboration with Denmark?

• National network of database systems
 – Nearly 200 disease and administrative databases
 – Unique personal identifier for each citizen links to data systems
 – Permits assembly of cohorts with unaggregated, individual level data on thousands or millions of people

• National Biobank of PKU Samples
 – Established in 1982

• “Better Health for Mother and Child”
 – Danish National Birth Cohort of over 100,000 pregnant women and their offspring
 • Includes blood samples, pre- and postnatal interviews, etc.
Examples of CDC-Denmark Analyses In Progress

- Prenatal exposure to self-reported maternal infections, smoking, and congenital cerebral palsy
- Maternal infections during pregnancy and the risk of cerebral palsy in singleton births: Results from a large population-based cohort study
- Association between early motor milestones and cerebral palsy among CP cases in the Danish National Birth Cohort
Summary

• Epidemiology is the science that provides the information upon which public health decisions can be responsibly made.

• The epidemiology of cerebral palsy is a rapidly evolving field.

• CDC is involved in understanding more about CP using the public health model in order to ultimately guide prevention programs and public policy.
Acknowledgements

“It Takes A Village”

• It takes many individuals at each ADDM Network site to run our monitoring programs, including:
 – Primary investigators, project coordinators, abstractors, data managers, programmers, clinician reviewers, epidemiologists and other project staff

• They are dedicated, creative, hard-working, and resourceful and we are thankful for each and every one of them!
How Can I Get Public Health Training?

• Student Internships and Fellowships
• Post-doctoral Research Fellowships
• Career Training Fellowships
 – Epidemic Intelligence Service
 – ASPH/CDC Public Health Fellowship Program
 – Presidential Management Fellows
• CDC Training Resources
 – Minority Health Workforce Internship Opportunities
 – Training and Continuing Education Online

For more information about these and many more opportunities, please visit http://www.cdc.gov/Fellowships/
Thank you!
You can contact me at mxy1@cdc.gov

For more information, please visit www.cdc.gov/cp

For more information please contact Centers for Disease Control and Prevention

1600 Clifton Road NE, Atlanta, GA 30333
Telephone, 1-800-CDC-INFO (232-4636)/TTY: 1-888-232-6348
E-mail: cdcinfo@cdc.gov Web: www.cdc.gov